Fuel Unsaturation Effects on NOx and PAH Formation in Spray Flames

Xiao Fu and Suresh K Aggarwal

Department of Mechanical & Industrial Engineering
University of Illinois at Chicago

Abstract

The effect of fuel unsaturation on NOx and PAH formation in spray flames is investigated at diesel engine conditions. The directed relation graph methodology is used to develop a reduced mechanism starting from the detailed CRECK mechanism. The reduced mechanism and spray models are validated against the shock tube ignition data and high-fidelity, non-reacting and reacting spray data from the Engine Combustion Network [26]. 3-D simulations are performed using the CONVERGE software to examine the structure and emission characteristics of n-heptane and 1-heptene spray flames in a constant-volume combustion vessel. Results indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone (RPZ) near the flame stabilization region and a non-premixed reaction zone (NPZ) further downstream. Most of NOx is formed via thermal NO route in the NPZ, while PAH species are mainly formed in the RPZ. A small amount of NO is also formed via prompt route in the RPZ, and via N2O intermediate route in the region outside NPZ, and via NNH intermediate route in the region between RPZ and NPZ. The presence of a double bond leads to higher flame temperature and thus higher NO in 1-heptene flame than that in n-heptane flame. It also leads to the increased formation of PAH species, implying increased soot emission in 1-heptene flame than that in n-heptane flame. Reaction path analysis indicate that the increased formation of PAH species can be attributed to the significantly higher amounts of 1,3-butadiene and allene formed due to β scission reactions resulting from the presence of double bond in 1-heptene.

Keywords: Fuel Unsaturation, NOx and PAH emissions, N-heptane and 1-heptene spray flames, 3D simulations

1 Corresponding author, email: ska@uic.edu
1. Introduction

Liquid fuels used in propulsion and power generation applications are generally composed of a large number of hydrocarbon compounds, with several containing one or more unsaturated C=C bonds. Numerous recent studies have reported that the fuel reactivity and ignition behavior are strongly influenced by the degree of unsaturation, i.e., the number and position of double bonds. Detailed kinetic models [1,2,3] have been developed to examine the effects of the presence and position of double bonds on fuel reactivity and ignitability. Experimental investigations have also been performed using shock tube [4,5,6], RCM [7,8,9], and flow reactor [10]. An important finding from these studies is that the ignition delay time could increase significantly, especially in the NTC (negative temperature coefficient) region, due to the presence of double bonds in the fuel molecular structure. The fuel ignitability is also found to be strongly influenced by the length of the saturated portion aside the double bond, with the longer alkyl chain yielding shorter ignition delay.

Engine experiments [11,12,13] using different biodiesel fuels have also reported longer ignition delays as a consequence of unsaturated components in fuel composition. In addition, these and other engine experiments [14, 15] with biodiesels have observed that due to the higher concentration of unsaturated components, some biodiesels produce more PM and UHC compared to those containing smaller amount of unsaturated components. In order to explain these trends in engine PM emission, fundamental investigations have been reported on the formation of soot precursors during the combustion of unsaturated biodiesel components. Garner et al. [6] observed from their shock tube experiments that 1-heptene (1-C7H14) produces more acetylene than does the n-heptane (n-C7H16) over intermediate temperatures, 1100-1600K. Garner and Brezinsky [16] and Garner et al. [17] subsequently extended the study to the oxidation of methyl octanoate and methyl trans-2-octenoate, and observed longer ignition delay and increased acetylene (C2H2) formation in the case of unsaturated methyl ester. Note that acetylene provides a major route for soot particle surface growth [18,19]. Sarathy at el. [20] conducted flame experiments and observed that compared to methyl butanoate, its unsaturated counterpart, methyl crotonate produces higher amount of acetylene, propyne (1-C3H4), 1-butene (1-C4H8), 1,3-butadiene (1,3-C4H6), and benzene (C6H6), indicating the potential of increased soot formation with unsaturated biodiesel fuels compared to
the saturated ones. Our previous studies [21,22] on n-heptane and 1-heptene partially premixed counterflow
flames (PPFs) revealed that 1-heptene produces higher amounts of acetylene and benzene compared to the
saturated fuel, n-heptane. Further analysis indicated that the dominant path for benzene formation involves the
recombination of propargyl radicals (C₃H₃), and the presence of the double bond in 1-heptene provides a
significant route for its production through the formation of allyl radical (C₃H₅). This path is not favored in the
oxidation of n-heptane, as it decomposes directly to smaller alkyl radicals.

While the aforementioned studies have provided significant insight pertaining to fuel reactivity and
ignitability, relatively little research has been reported concerning the combustion and emission behavior of
unsaturated hydrocarbons in realistic flames. The present study examines the effect of the presence of a double
bond on NOₓ and PAHs emissions in spray flames under diesel engine conditions. 3-D simulations are performed
for the fuel injection, ignition, combustion, and emission characteristics using saturated and unsaturated fuels,
namely n-heptane and 1-heptene, respectively. It extends our previous investigations [21, 22], which considered
quasi-1-D partially premixed flames in a counterflow configuration, to more realistic spray flames using the
Sandia constant volume reactor. This reactor has been extensively used at Sandia National Laboratories [23, 24,
25] to provide high-fidelity data for non-reacting and reacting sprays. The data can be downloaded from the
Engine Combustion Network (ECN) [26] website.

N-heptane and 1-heptene flames are simulated by developing a skeletal mechanism, by reducing it from
the detailed CRECK mechanism [27], using the Directed Relation Graph methodology with Error Propagation
and Sensitivity Analysis [28, 29]. The skeletal mechanism is validated using ignition delay measurements for n-
heptane and 1-heptene. The fuel oxidation model is then combined with the PAH and NOₓ models, and
predictions for the n-heptane non-reacting and reacting sprays are validated against the ECN experimental data
[26]. Simulations are then performed to characterize the effects of fuel unsaturation or double bond on NOₓ and
PAH emissions in spray flames at temperatures and pressures relevant to engine operating conditions. The
dominant NOₓ and PAH species formation regions in these flames are identified using the scatter plots of relevant
species in ϕ-T space. Finally, a reaction path analysis is conducted to identify the dominant paths for the
formation of PAH species in n-heptane and 1-heptene flames.

2. Computational Model

Simulations are performed using a commercial CFD code, CONVERGE [30, 31], which incorporates the
state-of-the-art models for spray injection, atomization and breakup, turbulence, droplet collision and coalescence,
spray-wall interaction, and vaporization. Since the details of these models have been described elsewhere, only a
brief description is provided here. The 3D computational model for two-phase reacting flow is based on an
Eulerian-Lagrangian formulation. Gas-phase flow field is described by the Favre-averaged Navier-Stokes
equations in conjunction with the Reynolds-averaged Navier-Stokes (RANS)-based turbulence model [32], which
includes source terms for the effects of the dispersed phase on gas-phase turbulence. The turbulence combustion
interaction modeling (TCI) was not considered in the present study. As discussed by Pomraning et al. [33],
appropriate TCI models will reveal more small-scale details of flame structure compared to the well-mixed
models. However, such models are much more computationally expensive when implemented with detailed
mechanisms in engine-type simulations. On the other hand, the well-mixed models have been shown to be
accurate enough for predicting the basic two-phase flow properties, i.e., spray and vapor penetration, temperature
profile, ignition delay, and flame lift-off length, etc. Moreover, previous studies have demonstrated the validity of
such models for predicting combustion processes in both gasoline and compression ignition engines [26]. In
particular, Pomraning et al. [33] have provided a detailed assessment of the unsteady RANS-based approach, and
demonstrated that for well-resolved computations, the effects of mixing are accounted for using the RANS
turbulence model. Further improvements in the simulation results by implementing an appropriate TCI model will
be pursued in future work.

A finite volume methodology with a semi-implicit hybrid scheme is used to solve the governing equations
on the Eulerian grid for the gas-phase properties, which include 3 velocity components, temperature, pressure, and
species concentrations. The length and time scales associated with spray processes are too small to be resolved
computationally, necessitating the use of sub-grid scale models to describe the spray physics. The spray is
represented by a stochastic system of a discrete number of parcels, which are tracked computationally using a Lagrangian scheme. The two phases are coupled through the mass, momentum, and energy exchange terms, which are present in both the liquid- and gas-phase equations. The droplet breakup processes are modeled using the Kelvin–Helmholtz and Rayleigh–Taylor (KH–RT) models [34]. Droplet collisions are modeled with the no time counter algorithm [35]. A dynamic drag model [36] is used; it is based on the postulation that the drag coefficient depends on the shape of the droplet, which can vary between a sphere and a disk. A droplet evaporation model based on the Frossling correlation is used. Selected physical properties of n-heptane and 1-heptene fuels at 20°C and 1atm are listed in Table 1 [37]. As indicated, the difference between the physical properties of the two fuels is not significant. Moreover, since the focus here is on the chemistry effects of fuel unsaturation, simulations for both fuels are carried out using the physical properties of n-heptane. The effects of turbulence on the droplet are accounted for by using a turbulent dispersion model. Detailed kinetic modeling is performed by using the SAGE chemical kinetic solver [5] in CONVERGE, which is directly coupled with the gas-phase calculations through a well-stirred reactor model.

The CFD solver uses an innovative modified cut-cell Cartesian method for grid generation [38]. The adaptive mesh resolution (AMR) technique enables local mesh refinement in regions of high curvatures. For the results presented here, the base (largest) grid size is fixed at 2mm. In order to resolve the flow near the injector, a local refinement area with 0.125mm grid sizes are used, along with AMR based on the curvature in the velocity and temperature fields. As discussed in the next section, these grid sizes were found to be sufficient to capture the spray droplet break up, vaporization and combustion processes.

3. Reduced Mechanism Generation and Validation

In order to perform well-resolved simulations for both n-heptane and 1-heptene spray flames at diesel engine conditions, a skeletal or reduced CRECK mechanism was developed to model the oxidation chemistry of these two fuels, and the NOx and PAH formation. The skeletal mechanism (207 species and 4094 reactions) was obtained by reducing it from the detailed CRECK mechanism, based on the Directed Relation Graph with Error Propagation and Sensitivity Analysis (DRGEPAS) [28, 29]. The detailed CRECK mechanism (482 species and
19072 reactions), which has been developed and validated by Ranzi et al. [39, 40, 41, 42] for the simulations of both low- and high-temperature combustion phenomena.

The DRGEPSA algorithm consists of two phases: (1) directed relation graph error propagation (DRGEP), and (2) sensitivity analysis (SA). The mechanism reduction procedure has been reported by Lu and Law [28]. Since it is difficult to identify and eliminate an unimportant species because of the coupling between species, the following rule is employed to determine whether a species can be removed. Considering that species A directly forms species B, the species B can be removed if and only if its removal will not induce a significant error in the production rate of species A. This error is determined by a normalized contribution of reaction A→B among all the reactions dependent on species A. Also key species are specified to keep certain important reaction routes such as the detailed PAH and NOx formation routes. In the present study, CH3, acetylene (C2H2), benzene (C6H6), pyrene (C16H10), ethylene (C2H4), propargyl (C3H3), cyclopentadiene (cyC5H6), naphthalene (C10H8), styrene (C8H6C2H3), NO, N2O, NNH, CH, CO, OH, HO2, H2O2 and heptylhydroperoxy (NC7-QOOH) species are specified to be kept in order to accurately account for the C1-C4 oxidation chemistry, n-heptane and 1-heptene ignition behavior, and NOx and PAH formation routes. The resulting reduced mechanism also contains all those species that are related to the above key species. Once the optimal mechanism is obtained from the DRGEP step, sensitivity analysis is performed to further reduce the size of the mechanism. All the species after DRGEP step are arranged in ascending order based on the error in ignition delay induced by removing this species. The sensitivity analysis removes the species identified from the top of the list one by one until the error generated by the resulting skeletal mechanism with the remaining species reaches the user-defined tolerance for ignition delay.

The operating conditions used during the reduction and testing of the reduced mechanism include pressures of 30, 40, 50 atm, temperatures of 800, 900, 1000, 1100, 1200 K, and equivalence ratios of 0.5, 1.0, 1.5, 2. Fuels used include 100% n-heptane, 100% 1-heptene, 100% methane, 50%n-heptane/50%methane, 50%1-heptene/50%methane, 90%n-heptane/10%methane, and 90%1-heptene/10%methane by volume.

3.1 Validation Using the Ignition and Spray Data from Experiments
The reduced CRECK mechanism was validated against the shock tube ignition data for n-heptane and 1-heptene, as well as the non-reacting and reacting spray data from ECN. Figure 1a presents a comparison of the predicted ignition delays against the measurements of Gauthier et al. [43] for n-heptane/air mixtures. Simulations were performed in constant-pressure, homogeneous reactor using the CHEMKIN software and four different mechanisms, namely, the reduced CRECK mechanism, Chalmers mechanism [44, 45], detailed CRECK mechanism, and detailed Lawrence Livermore National Laboratory (LLNL) mechanism [46]. Overall, there is good agreement between the various predictions and measurements. At high temperatures (T>1100 K), all the four mechanisms overpredict ignition delays. However, at lower temperatures, relevant for ignition in diesel engines, there is reasonably good agreement. Moreover, the reduced mechanism reproduces the experimentally observed negative temperature coefficient (NTC) regime, wherein the ignition delay increases with temperature. Figure 1b compares the ignition delays for 1-heptene/air mixtures predicted using the reduced and detailed CRECK mechanisms against the measurements of Garner et al. [16]. Both the mechanisms are able to reproduce the experimental data, although the values are somewhat overpredicted. Note that due to limited experimental data, simulations only considered temperatures greater than 1300K. Moreover, for temperatures below 1300, the ignition delays for 1-heptene become significantly higher compared to those for n-heptane.

Further validation of the reaction mechanism and spray models was performed using the high-fidelity experimental data from the ECN [26] for turbulent non-reacting and reacting sprays. Validation for the non-reacting spray is useful as it establishes that the spray models accurately predict the spray development and fuel-air distribution. A schematic of the combustion vessel used in experimental studies at Sandia can be found in Refs. [26]. A cubical geometry of 108 mm on each side is used to represent the vessel geometry in simulations. The vessel has a common-rail fuel injector that is mounted in a metal side-port such that the spray is directed into the center of the chamber. The well-characterized engine relevant (high temperature and pressure) initial conditions are created by burning a premixed fuel-air mixture. For spray experiments, a range of ambient conditions in terms of density, temperature, and oxygen concentrations can be provided. Further details of the vessel and injector are provided in Refs. [23, 47]. For the results presented here, the base grid size is 2mm except for the grid convergence cases. In order to
resolve the flow near the injector, a fixed grid embedding is employed such that the minimum grid size is 0.125mm. In other regions, four levels of adaptive mesh refinement are employed based on the velocity and temperature fields. The simulations are performed on the High Performance Computing Cluster at UIC using up to three nodes. Each node has an Intel® Xeon® CPU at 2.60GHz with 16 cores and 20MB cache.

Figure 2 presents the liquid and vapor penetrations versus time for n-heptane non-reacting spray. Predictions for the three grid sizes are compared with measurements. The experimental conditions used in the simulations are listed in Table 2. Simulations use the same injection rate profile as experiments. The liquid penetration distance is determined using the axial distance encompassing 97% of injected liquid n-heptane mass, while the vapor penetration is calculated based on a fuel vapor mass fraction contour level of 1%. As indicated in Fig. 3, the predicted liquid and spray penetrations are generally in good agreement with measurements. The liquid penetration increases with time, and then stabilizes to a quasi-steady value. While the qualitative trends are captured with all the three grid sizes, the quantitative agreement improves as the grid size is reduced, except for the initial liquid penetration (for time below 0.5ms), which is overpredicted by the model. As discussed by Som et al. [48], such differences may be attributed to several factors, including experimental uncertainties in near-nozzle measurements, under-resolution of flow in the near-nozzle region, and inability to capture the effect of cavitation and turbulence in the injector flow. It is also important to note that the predicted results are fairly grid-independent for the grid sizes of 0.25 and 0.125mm, and the spray development and vaporization processes are fairly well resolved using the RNG k-ε turbulence model with the minimum grid size of 0.125mm. These results are consistent with previous studies concerning grid convergence. Som et al. [48] performed computations of non-reacting and reacting sprays for n-heptane and n-dodecane fuels, and observed good agreement between measurements and predictions using the RNG k-ε turbulence model with minimum grid size of 0.25mm. Xue et al. [49] also performed simulations for the same two fuels using the RANS and LES turbulence models, and reported grid convergence with grid sizes of 0.25mm and 0.125mm. Thus, the simulations in the present study were performed using the minimum grid size of 0.125mm and four levels of adaptive mesh refinement (AMR) based on the velocity and temperature fields, but a fixed grid embedding near the nozzle.
Validation results for the n-heptane reacting spray are presented in Figure 3, which compares the measured and predicted ignition delays (τ_{ig}) and flame LOL for different initial temperatures. Additional validation for the predicted τ_{ig} and LOL for different O$_2$ concentrations is provided in Ref. [50]. The experimental conditions used in the simulations are listed in Table 2. In experiments, τ_{ig} was determined using a criterion based on a specific pressure rise, while in simulations, it was computed by using the time from start of injection (SOI) to the instant when the maximum temperature (T_{max}) in the computational domain exceeds a specified value (1500K). Using a different criterion based on the rate of change of T_{max} reaching a peak value yielded essentially the same ignition delay. A specific OH mass fraction contour corresponding to 2% of the peak value was used to determine the LOL in simulations, while it was measured using an intensified CCD camera with a 310nm band-pass filter (10 nm FWHM) [51,52] in experiments. There is fairly good agreement between the predictions and experimental data. Both the experiments and predictions indicate a decrease in ignition delay, and consequently in LOL, as the initial temperature is increased. It is also important to note that both simulations and measurements do not indicate the existence of NTC region, which can be seen in Fig. 1a for homogeneous n-heptane/air mixtures. This may be related to the temporally and spatially evolving temperature and species fields for the spray case [53].

Figure 4 compares the high speed soot luminosity images from ECN experiments with the soot contours predicted using the RANS and LES models. The two-step soot model used in simulations is adopted from Hiroyasu and Kadota [54]. The model assumes spherical particles formed by acetylene and, thus provides a qualitative comparison with luminosity images. Note that while a two-step soot model based on acetylene is used in the present study, the formation of PAHs is investigated in detail. The spray in the computed images (Fig. 4) is shown by blue dots representing the size of liquid parcels, while the green contour line represents the OH mass fraction contour corresponding to 2% of the peak value, and shows the flame envelope. Overall, there is good agreement between the computed and measured flame images. As expected, the LES model provides more spatial details or small-scale features compared to the RANS model. There is also good agreement between the measured and predicted LOL values. Solid vertical lines at 0.017m in the computed images indicate the measured LOL.
4. N-Heptane Spray Flame Structure

Results here focus on the computed structure and emission characteristics of n-heptane and 1-heptene spray flames in the Sandia combustor. Figure 5 shows the temporal evolution of n-heptane spray flame in terms of temperature and mixture fraction contours at different times after the start of injection (SOI) for 1000K initial temperature and 21% O\textsubscript{2}. The black lines represent the mixture fraction or equivalence ratio ϕ ranging from 0.15 to 3, with ϕ defined as:

$$\phi = \frac{2 \sum_i N_i \eta_{C,i} + \frac{1}{2} \sum_i N_i \eta_{H,i}}{\sum_i N_i \eta_{O,i}}$$ (1)

Here i represents all species except CO\textsubscript{2} and H\textsubscript{2}O, N_i the number of moles of species i and $\eta_{C,i}$, $\eta_{H,i}$ and $\eta_{O,i}$ the number of carbon (C), hydrogen (H) and oxygen (O) atoms, respectively, in ith species. The ϕ contours are good marker of the reaction zones. Only the center part (0.04x0.08m2) of the computational domain (0.108x0.108m2) is shown in the figure. The injector exit is located at the left boundary.

The processes of fuel injection, spray development, fuel-air mixing and ignition can be discerned from the contour plots at 0.3 and 0.5ms. For instance, region within $\phi=3$ contour at 0.3ms indicates a fuel-rich zone characterized by pre-ignition pyrolysis and oxidation reactions. Subsequently, the ignition occurs at 0.5ms, as indicated by the high-temperature region between $x=30$mm and $x=40$mm. Note that the measured ignition delay time in Sandia experiments for the same conditions was 0.53ms. The ignition process is more clearly depicted in Fig. 6, which presents the heat release rate (HRR) contours (left) and scatter plots in ϕ-T space (right) at three different times. Such scatter plots have previously been used to visualize the soot and NO\textsubscript{x} formation regions in IC engines, and also to provide insight into the ignition process [53]. The blue contours and scatter plots in Fig. 6 depict regions of negative HRR, indicating pre-ignition endothermic reactions. Moreover, prior to ignition event (at $t=0.4$ms), the peak HRR is only 1011J/s-m3, and located at $T=900$K and $\phi=4$ in the scatter plot at $t=0.4$ms. However, at $t=0.5$ms, a small region of high HRR can be visualized in the ϕ-T plot near $\phi=2.5$ and $T=1200$K, indicating the occurrence of ignition. Subsequently, a wide region with significant heat generation can be seen in
both the contour and scatter plots at 0.6ms, indicating self-sustained combustion with \(T>1200 \text{K} \) and 0.1<\(\phi<5 \). The combustion process is more clearly indicated in Fig. 5 by the \(\phi \) and \(T \) contours at t=0.7 and 1.1ms. It is characterized by distinct regions of rich premixed combustion and diffusion combustion. For the present case, the rich premixed zone (RPZ) is indicated by region corresponding to 2<\(\phi<5 \) and 2000K<\(T<2500 \), while the diffusion or non-premixed zone (NPZ) corresponds to 0.15<\(\phi<2.5 \) and high temperatures (2500K<\(T<2800 \)) due to exothermic reactions forming CO\(_2\) and H\(_2\)O species. The green vertical lines at \(x=17 \text{mm} \) in Fig. 5 mark the measured flame LOL, which matches with the predicted LOL indicated by the contours at t=0.7 and 1.1ms.

Figure 7 presents the integrated fuel vapor mass and HRR profiles with respect to time. The two-stage ignition process can be clearly seen from the HRR profile. The first increase in HRR at 0.2ms is related to the 1st-stage ignition while the second sharp increase at 0.5ms pertains to the 2nd-stage ignition, followed by the rich premixed combustion and the diffusion combustion. The rich premixed combustion is also indicated by the sharp decrease in n-heptane mass between 0.5 and 0.8ms, while the diffusion combustion is indicated by more moderate and nearly constant rate of decrease of n-heptane mass. The RPZ and NPZ can be distinguished more clearly in Fig. 8, which presents C\(_2\)H\(_2\), OH, NO, and C\(_6\)H\(_6\) mass fraction contours. As indicated, the RPZ and NPZ are characterized, respectively, by the high concentrations of C\(_2\)H\(_2\) and OH species. In addition, most of NO is formed in the NPZ where temperatures are high, while benzene (C\(_6\)H\(_6\)) is formed in the RPZ.

In order to identify the relative contributions of various NO\(_x\) (NO and NO\(_2\)) formation routes, Figure 9 presents contour plots for the mass fractions of NO, NO\(_2\), HCN, NH, N\(_2\)O and NNH. Note that HCN and NH species are important for prompt NO, while N\(_2\)O and NNH species are associated with NO formed through the N\(_2\)O intermediate and NNH intermediate routes, respectively. As can be seen in Fig. 9a, most of NO is formed in NPZ, with a relatively a small amount also being formed in RPZ and the region outside NPZ. The NO formed in NPZ is predominantly through the thermal NO route since temperatures are the highest (2600K to 2900K) there. In indicated in Fig. 9b, most of NO\(_2\) is formed in the region outside NPZ, where temperature is about 1500K and abundant amount of O\(_2\) is present. The prompt NO is mainly formed in RPZ as indicated by the HCN and NH contours in Figs. 9c and 9d, respectively. Finally, N\(_2\)O is formed in the lean region outside the NPZ similar to
NO\textsubscript{2}, (cf. Fig. 9e), while NNH is formed in the region between the RPZ and NPZ (cf. Fig. 9f), implying that NNH intermediate route is important there.

4.1 Effect of Fuel Molecular Structure on NO and PAH Formation

In order to characterize the effect of fuel molecular structure or unsaturation on NO and PAH emissions, n-heptane and 1-heptane spray flames were simulated at identical conditions in the Sandia reactor. Figure 10 presents the temporal variations of peak temperature and integrated NO mass for the two flames. Note that at typical autoignition temperatures (800-1000K) in diesel engines, 1-heptene has much longer ignition delays than n-heptane. Consequently, simulations were performed with an initial temperature of 1300K. At this temperature, ignition delays for the two fuels are nearly the same (=0.2ms), as indicated in Fig. 10. These values also compare well with the measured value of 0.26ms in Sandia experiments. More importantly, the peak temperature for 1-heptene flame is 2870K compared to a value of 2840K for n-heptane flame. Consequently, 1-heptene flame produces more NO compared to n-heptane flame. For example, at t=1.4ms, the total NO in 1-heptene flame is 18% higher than that in n-heptane flames, and the difference can be mostly attributed to increased thermal NO in 1-heptene flame.

Since temperature is the important factor for thermal NO, the increased NO in 1-heptene flame can be attributed to higher peak temperature in this flame. Note that the heating value of 1-heptene is (LHV=44.66MJ/kg) is slightly lower than that of n-heptane (44.92MJ/kg). Thus the higher peak temperature in 1-heptene flame is not related to the heating value, but to the fuel oxidation chemistry. In order to examine this aspect, homogeneous reactor simulations were performed at similar conditions. Figure 11 presents the reaction path analysis for the two fuels, based on constant volume simulations with initial conditions similar to those for spray flames, i.e., T=1300K, p=55atm, $\phi=1$. At these conditions, oxidation routes are significantly different for the two fuels. As indicated in Fig. 11a, the dominant path for n-heptane is through H abstraction reaction forming alkyl radicals. Here the more prominent reaction is $\mathrm{C}_7\mathrm{H}_{16}$+ OH \rightarrow $\mathrm{H}_2\mathrm{O}+\mathrm{C}_7\mathrm{H}_{15}$. A relatively small amount of n-heptane (12%) also decomposes through the breaking of C-C bonds to form smaller alkyl radicals with 2 to 5 carbons. Subsequently, about 82% of $\mathrm{C}_7\mathrm{H}_{15}$ undergoes β scission reactions forming smaller (C_2-C_3) alkyls and olefins,
while about 12% of C\textsubscript{7}H\textsubscript{15} undergoes oxidation with O\textsubscript{2} and isomerization to form heptyl-hydroperoxy radical (C\textsubscript{7}H\textsubscript{14}-QOOH). However, the heptyl-hydroperoxy radicals directly dissociate into small hydrocarbons and heptene (C\textsubscript{7}H\textsubscript{14}), and the latter gets oxidized to form C\textsubscript{2}-C\textsubscript{5}. In contrast, due to the presence of double bond, about 33% of 1-heptene undergoes \(\beta\) scission reactions, mainly though reactions C\textsubscript{7}H\textsubscript{14}+OH=>CH\textsubscript{2}CHCH\textsubscript{3}+C\textsubscript{4}H\textsubscript{8}+H\textsubscript{2}O and C\textsubscript{7}H\textsubscript{14}=>CH\textsubscript{2}CHCH\textsubscript{2}+C\textsubscript{4}H\textsubscript{9}, to form allyl radicals (CH\textsubscript{2}CHCH\textsubscript{2}). The rest 67% of 1-heptene is oxidized to form smaller hydrocarbons. All these oxidation reactions are faster compared to the dissociation reaction of 1-heptene. Consequently, the ignition delay is shorter for 1-heptene compared to that of n-heptane.

Figure 12 compares the temporal profiles of temperature and NO mole fraction for the two fuels. These simulations were performed in a well-stirred reactor using the Chemkin software. Consistent with the reaction path analysis, the ignition delay times are 0.014ms and 0.018ms, while the peak temperatures are 3241K and 3217K for 1-heptene and n-heptane, respectively. The higher temperature is responsible for the 6.1% higher in NO for 1-heptene compared to that for n-heptane. Similar differences are observed for the NO formed through the prompt, N\textsubscript{2}O and NNH intermediate routes for the two fuels. Figure 13 compares the total amounts of HCN, N\textsubscript{2}O, NNH, and CH species in n-heptane and 1-heptene flames at 1.4ms. The CH\textsubscript{2} plot is similar to CH plot, and not shown. The amounts of HCN, N\textsubscript{2}O, and NNH are higher in 1-heptene flame compared to those in n-heptane flame, indicating that the NO formed through these routes is also higher in 1-heptene flame. Amongst the three routes, the contribution of prompt NO is more significant compared to the N\textsubscript{2}O and NNH intermediate routes. This is based on the fact that the total mass of HCN is noticeably higher than those of N\textsubscript{2}O and NNH. It is also important to note that the amounts of CH and CH\textsubscript{2} (not shown) produced in n-heptane and 1-heptene flames are similar, implying that the prompt NO route depends less on these species, and more on the higher temperature in 1-heptene flame. Figure 14 presents the scatter plots of HCN, N\textsubscript{2}O and NNH in \(\phi\)-T space for the n-heptane and 1-heptene flames. Consistent with the plots of these species in Fig. 9, most of HCN and thus prompt NO is formed in RPZ, i.e., in the region 2<\(\phi\)<6 and 1700<T<2200, while N\textsubscript{2}O is formed in the lean region outside NPZ with 1500<T<2000, and NNH is formed between RPZ and NPZ, in the region 2<\(\phi\)<3 and 2400<T<2700.

Quantitatively, 1-heptene produces significantly higher HCN and thus higher prompt NO compared to that of n-
heptane, as indicated by a wider range of red dots. The contributions of N₂O and NNH intermediate routes are also higher in -1-heptene flame that those in n-heptane flame, but the differences are not as significant.

Figure 15 presents the benzene mass fraction contours for 1-heptene and n-heptane flames at t=1.4ms. While the benzene formation region is located within the rich premixed zone for both flames, the amount of benzene formed in 1-heptene is significantly higher. The peak mass fractions are 0.0118 and 0.0087 for 1-heptene and n-heptane, respectively, i.e., 36% higher benzene for 1-heptene. Similar trends were observed for the formation of heavier PAH, such as pyrene (C₁₆H₁₀). Figure 16 compares the temporal variation of integrated mass of benzene and pyrene in n-heptane and 1-heptene flames. As expected, 1-heptene flame produces significantly more benzene and pyrene compared to n-heptane flame, with the differences being 22.0% and 21.9% for benzene and pyrene, respectively, at t=1.4ms.

Since benzene is an important aromatic species for pyrene and subsequent soot formation, it is important to identify the dominant path for benzene formation. The path analysis is presented in Fig. 17, based on well-stirred reactor simulations for the combustion of the two fuels at the same conditions as those of Fig. 11. Two major routes to form benzene involve reactions methyl-cyclo-pentadiene (MCPTD) => benzene and C₃+C₃ => benzene, where C₃+C₃ represent reactions involving either two propargyl (C₃H₅) radicals or a propargyl reacting with allene (AC₃H₄) or propyne (PC₃H₄). While these two routes appear to be similar for the two fuels, the amount of benzene formed is higher in 1-heptene due to the higher concentrations of allene and C₄H₅ species. This is due to the fact that the presence of double bond in 1-heptene opens an additional route (highlighted with red) for allene formation through 1,3-butadiene (C₄H₆) and 3-butenal (C₃H₅CHO). In addition, the contribution of C₄H₅ route to form allene in 1-heptene is increased to 14% compared to 8% for n-heptane. Since these two routes are both associated with 1,3-butadiene, further analysis was done to identify the reason for the increased formation of 1,3-butadiene in 1-heptene. As highlighted by red lines in Fig. 17, this can be attributed to the presence of double bond in 1-heptene, which leads to its direct decomposition to form two C₄ hydrocarbons, C₄H₈ and CH₂C₃H₅, through β scission reaction. These two C₄ species lead to the formation of 1,3-butadiene and C₄H₇ in 1-heptene. In contrast, there are fewer routes to form 1,3-butadiene and C₄H₇ in n-heptane. Moreover, the two routes involving C₄H₈ and C₄H₁₀ produce much less 1,3-butadiene compared to the direct decomposition reactions
for 1-heptene. Finally, 1-heptene also produces higher amount of \(cyc\text{C}_5\text{H}_5\) through \(C_5\text{H}_8\) which further increases the amount of benzene formed through methyl-cyclo-pentadiene route. Thus, while the relative contributions of the two benzene formation routes are similar for the two fuels (21% for MCPTD route and 79% for C3 route vs. 20% and 80% for n-heptane and 1-heptene, respectively), the amount of benzene formed is higher in 1-heptene due to the significantly higher amounts of 1,3-butadiene and allene. This is further confirmed in Fig. 18, which compares the integrated amounts of acetylene, propargyl, 1,3-butadiene and allene formed in n-heptane and 1-heptene flames. While the amounts of acetylene and propargyl formed in the two flames are similar, significantly higher amounts of 1,3-butadiene (about 117% higher) and allene (48% higher) are formed in 1-heptene flame compared to those in n-heptane flame. Thus the pathway analysis based on well-stirred reactor simulations confirm the 3-D CFD results that the increased amount of benzene in 1-heptene flame is associated with the \(\beta\) scission reactions due to the presence of double bond in 1-heptene. This result is generally consistent, except for the methyl-cyclo-pentadiene route, with the reaction path analysis for benzene formation reported in a previous study [55] dealing with 1-heptene and n-heptane counterflow flames.

5. Conclusions

We have examined the effect of fuel unsaturation on NO\(_x\) and PAH formation in n-heptane and 1-heptene spray flames at diesel engine conditions. The directed relation graph with error propagation and sensitivity analysis has been employed to develop a reduced kinetic mechanism (with 207 species and 4094 reactions), starting from the detailed CRECK mechanism [42] containing 482 species and 19072 reactions. The mechanism and spray models have been validated against the shock tube ignition data and high-fidelity spray data in a constant-volume combustion vessel from the Engine Combustion Network (ECN) [26]. The 3-D CONVERGE software has been used to examine the structure and emission characteristics of n-heptane and 1-heptene spray flames in the same vessel. Important observations are as follows.

(1) Validation of the reduced mechanism for the ignition of n-heptane/air and 1-heptene/air mixtures indicates fairly good agreement between the predictions and measurements. The mechanism also shows good agreement with other detailed and reduced mechanisms, and reproduces the experimentally observed negative
temperature coefficient (NTC) behavior for n-heptane/air mixtures. In addition, results indicate that at moderate temperatures (800<T<1100), ignition delays for 1-heptene are significantly higher than those for n-heptane, but similar at high temperatures. Validations of the 3-D simulations against the ECN data for n-heptane sprays also show good agreement between the predicted and measured spray penetration lengths, ignition delays, flame liftoff lengths, and global flame structure.

(2) Simulation results for n-heptane and 1-heptene spray flames indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone (RPZ) near the flame stabilization region and a non-premixed reaction zone (NPZ) further downstream. The RPZ and NPZ are characterized, respectively, by the high concentrations of C₂H₂ and OH species.

(3) The scatter plots in φ-T space are used to identify the dominant NOₓ and PAH formation regions in spray flames. For the conditions investigated, most of NOₓ is formed via thermal NO route in the NPZ, while PAH species are mainly formed in the RPZ. Relatively small amount of NO is also formed via prompt route in the RPZ, and via N₂O intermediate route in the fuel-lean region outside NPZ, and via NNH intermediate route in the region between RPZ and NPZ.

(4) The presence of a double bond leads to higher flame temperature and consequently higher thermal NO in 1-heptene flame than in n-heptane flame. It also leads to the significantly higher amounts of PAH species, implying higher soot emission in 1-heptene flame compared to that in n-heptane flame. Reaction path analysis indicates that this can be attributed to β scission reactions due to the presence of double bond, which lead to the significantly higher amounts of 1,3-butadiene and allene formed in 1-heptene compared to those in n-heptane. Moreover, the presence of double bond in 1-heptene opens an additional route for allene formation through 1,3-butadiene (C₄H₆) and 3-butenal (C₃H₅CHO) species.

6 Acknowledgment

Authors greatly appreciate the help provided by Dr. P. K. Senecal and his colleagues at Convergent Science in running the Converge code.
6. Reference

[34] Patterson MA, Reitz RD. Modeling the effects of fuel spray characteristics on diesel engine combustion and emission. SAE paper, 1998-980131.

