Logo for the University of Illinois at Chicago
    • Login
    View Item 
    •   INDIGO Home
    • Dissertations and Theses at UIC
    • UIC Dissertations and Theses
    • View Item
    •   INDIGO Home
    • Dissertations and Theses at UIC
    • UIC Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Loading Induced Bone Adaptation in the Distal Radius of Women: Influence of Mechanical Environment

    Thumbnail
    View/Open
    Bhatia_Varun.pdf (1.887Mb)
    Date
    2013-10-24
    Author
    Bhatia, Varun A.
    Metadata
    Show full item record
    Abstract
    Fractures of the distal radius are a common consequence of falls in older adults. Exercise based interventions have been used to maintain and improve bone strength and prevent fall related fractures in older populations, based on evidence that bone adapts to the mechanical environment it experiences. This adaptive response takes place by bone modeling and remodeling, and is driven by the mechanical stimuli experienced by the bone. The magnitude of the adaptive response has been attributed to the characteristics of the mechanical stimulus in animals. However, the contribution of the different mechanical stimulus characteristics to the adaptive process is currently unknown in humans. The objective of this research was to understand the quantitative relationship of human bone to its mechanical environment, with the long term goal of designing and evaluating exercise interventions to prevent or slow bone loss that can lead to osteoporosis, and to improve fracture strength. A novel in-vivo wrist loading model was used to accomplish the objectives of this research. Methods for subject specific finite element model generation to predict the surface strains at the distal radius were validated with high accuracy (r=0.968, RMSE=11.1%), and were used to assess loading-induced bone strain in the subjects. An increase (or the prevention of a decrease) in ultra-distal radius size and mass was the primary adaptation response to the axial compression of the radius, and this response was more directly related to the strain magnitude than the force magnitude of the applied load. Additionally, small but significant correlations were observed between changes in bone mineral density and the mechanical measures of the applied loads at the local level within the bone. To our knowledge, this was the first time that the localized adaptation behavior of bone was tested in humans. In summary, we have developed an in vivo loading model of the human radius for the purpose of understanding the influence of mechanical environment on bone adaptation. In addition to its usefulness for exploring bone adaptation in humans, this research also acts as a step towards designing effective targeted mechanical interventions to increase (or prevent the decrease of) bone strength.
    Subject
    Bone biomechanics
    Bone adaptation
    Finite Element Modeling
    Cadaver testing
    Mechanical Environment
    Human distal radius
    Loading
    Type
    thesis
    text
    Date available in INDIGO
    2013-10-24T20:31:16Z
    URI
    http://hdl.handle.net/10027/10124
    Collections
    • Dissertations and Theses - Engineering
    • UIC Dissertations and Theses

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Statement
    Theme by 
    Atmire NV

    Browse

    All of INDIGOCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Statement
    Theme by 
    Atmire NV