Show simple item record

dc.contributor.authorKLEIN, C.
dc.contributor.authorSPARBER, C.
dc.contributor.authorMarkowich, P.
dc.date.accessioned2016-01-22T17:13:35Z
dc.date.available2016-01-23T10:30:17Z
dc.date.issued2014-10
dc.identifier.bibliographicCitationKlein, C., Sparber, C. and Markowich, P. Numerical study of fractional nonlinear Schrödinger equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. 470(2172). 10.1098/rspa.2014.0364en_US
dc.identifier.issn1364-5021
dc.identifier.urihttp://hdl.handle.net/10027/20038
dc.descriptionPublisher Embargoen_US
dc.description.abstractUsing a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schr ̈odinger type equations involving a fractional Laplacian in the one-dimensional case. By an appropriate choice of the dis- persive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up ver- sus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states, and the long time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schr ̈odingeren_US
dc.description.sponsorshipNoneen_US
dc.publisherThe Royal Societyen_US
dc.subjectNoneen_US
dc.titleNumerical study of fractional nonlinear Schrödinger equationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record