## Deriving General Relativity From String Theory.

##### View/Open

##### Date

2015-12##### Author

HUGGETT, N

VISTARINI, T

##### Publisher

The University of Chicago Press##### Metadata

Show full item record##### Abstract

Weyl symmetry of the classical bosonic string Lagrangian is broken by quantization, with profound consequences described here (along with a review of string theory for philosophers of physics). Reimposing symmetry requires that the background space-time satisfy the equations of general relativity: general relativity, hence classical space-time as we know it, arises from string theory. We investigate the logical role of Weyl symmetry in this explanation of general relativity: it is not an independent physical postulate but required in quantum string theory, so from a certain point of view it plays only a formal role in the explanation.
Weyl symmetry of the classical bosonic string Lagrangian is broken by quantization, with profound consequences described here (along with a review of string theory for philosophers of physics). Reimposing symmetry requires that the background space-time satisfy the equations of general relativity: general relativity, hence classical space-time as we know it, arises from string theory. We investigate the logical role of Weyl symmetry in this explanation of general relativity: it is not an independent physical postulate but required in quantum string theory, so from a certain point of view it plays only a formal role in the explanation.
Web of Science
Weyl symmetry of the classical bosonic string Lagrangian is broken by quantization, with profound consequences described here (along with a review of string theory for philosophers of physics). Reimposing symmetry requires that the background space-time satisfy the equations of general relativity: general relativity, hence classical space-time as we know it, arises from string theory. We investigate the logical role of Weyl symmetry in this explanation of general relativity: it is not an independent physical postulate but required in quantum string theory, so from a certain point of view it plays only a formal role in the explanation.
Weyl symmetry of the classical bosonic string Lagrangian is broken by quantization, with profound consequences described here (along with a review of string theory for philosophers of physics). Reimposing symmetry requires that the background space-time satisfy the equations of general relativity: general relativity, hence classical space-time as we know it, arises from string theory. We investigate the logical role of Weyl symmetry in this explanation of general relativity: it is not an independent physical postulate but required in quantum string theory, so from a certain point of view it plays only a formal role in the explanation. [web URL: http://www.jstor.org/stable/10.1086/683448].

##### Subject

String theorygeneral relativity