Logo for the University of Illinois at Chicago
    • Login
    View Item 
    •   INDIGO Home
    • Dissertations and Theses at UIC
    • UIC Dissertations and Theses
    • View Item
    •   INDIGO Home
    • Dissertations and Theses at UIC
    • UIC Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification and Characterization of Transferrin Receptor 1 and Other Novel HCV Entry Factors

    Thumbnail
    View/Open
    Martin_Danyelle.pdf (3.175Mb)
    Date
    2012-12-10
    Author
    Martin, Danyelle N.
    Metadata
    Show full item record
    Abstract
    Hepatitis C virus (HCV) is a liver tropic virus spread via blood. Because the majority of infections fail to clear, approximately 80% of patients develop a chronic infection. As a result, approximately 170 million people worldwide are chronically infected with high risk of a wide variety of liver pathologies making HCV the leading cause of liver transplantation in the U.S. With no preventative vaccine available and relatively ineffective treatment options, investigation of the HCV entry process is of particular importance as this represents a promising therapeutic target. Currently four cellular factors have been identified as being involved in HCV entry; however, failure of these factors to confer permissiveness to HCV infection to non-permissive cells suggests more entry factors remain to be identified. This study identifies and characterizes the role of transferrin receptor 1 (TfR1) and Niemann Pick C 1 Like 1 (NPC1L1) in the HCV entry process. Monitoring mRNA and protein levels of the iron uptake receptor TfR1, we found that HCV infection caused a decrease in both TfR1 mRNA and protein. In functional studies, TfR1 siRNA knockdown inhibited HCV infection. Looking more specifically at HCV entry, pre-incubation of cells with TfR1-specific antibodies resulted in a decrease in HCV infection as well as specific inhibition of entry of HCV pseudoparticles (HCVpp), but did not affect HCV replicon replication. Further mechanistic studies indicated that the HCV virion may directly interact with TfR1 at a later step in entry after CD81 and SRB1 interactions. In an analogous study, we discovered that NPC1L1 knockdown and antibody blocking inhibited HCV infection initiation, but not HCV replication or secretion. Importantly, there is already a FDA approved drug, ezetimibe, which inhibits NPC1L1 cholesterol uptake. Using an in vivo xenorepopulation mouse model of HCV infection, we demonstrated that blocking NPC1L1 with ezetimibe can inhibit subsequent HCV infection. Likewise, when ezetimibe is co-administered with IFN to treat chronic HCV infection in cells or mice we observed enhanced HCV inhibition. Thus, our findings identify TfR1 and NPC1L1 as novel HCV entry factors and highlight the utility of HCV entry as a potential therapeutic target.
    Subject
    HCV
    viral entry
    TfR1
    HCV therapeutics
    iron overload
    transferrin receptor 1
    hepatitis C virus
    Type
    thesis
    text
    Date available in INDIGO
    2012-12-10T19:59:56Z
    2014-06-11T09:30:25Z
    URI
    http://hdl.handle.net/10027/9327
    Collections
    • UIC Dissertations and Theses
    • Dissertations and Theses - Medicine

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Statement
    Theme by 
    Atmire NV

    Browse

    All of INDIGOCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Statement
    Theme by 
    Atmire NV